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ELECTRIFICATION OF AEROSOL PARTICLES MOVING IN A 

ONE-DIMENSIONAL CORONAL DISCHARGE 

N. L. Vasil'eva and L. T. Chernyi UDC 532.584:537.24 

The electrification of dispersed aerosol particles as the latter move through the region 
of a one-dimensional, unipolar coronal discharge is analyzed in the approximation of electro- 
hydrodynamics [I, 2]. The problem of such a discharge in a stationary gas was solved in [3], 
while it was solved for gas motion at a constant velocity in [4]. A numerical investigation 
on a computer of the problem of a one-dimensional coronal discharge in an aerosol and the 
charging of its particles in the case when the aerosol moves in the direction of ion motion 
was carried out in [4], where the influence of the charging of aerosol particles on the 
coronal discharge is also taken into account. 

In the present work we consider cases when the aerosol moves in the direction of ion 
motion or opposite to it, while the aerosol particles do not affect the coronal discharge. 
An exact analytical solution of the problem of particle charging is found in this formula- 
tion, it is investigated, and simple asymptotic expressions are obtained for the dependence 
of the particle charge on the local value of the electric field strength and the aerosol 
velocity. 

I. Let us consider one-dimensional steady flow of an aerosol consisting of a gas and 
initially uncharged, dispersed liquid particles through the region of a unipolar coronal dis- 
charge between two plane grid electrodes placed perpendicular to the stream. For determinacy 
we assume that the collector electrode is grounded (we take its potential as zero), while to 
create the coronal discharge a system of needles, which start to display corona at an emitter 
potential ~o, is installed on the emitter electrode. Let the distance L between the collector 
and the emitter be sufficiently large and let nonuniformity of the electric field near the 
grid electrodes be neglected. We choose the Cartesian coordinate system x, y, z so that the 
emitter and collector lie in the planes x = 0 and x = L. We are confined to the case when 
the influence of the electric field on the motion of the gas and aerosol particles is small. 
For this it is sufficient to satisfy the inequalities 

IqEIL/ou~-.l, qbE~L/(pcvTlul)<<l, 
r a i n  (IQEll(6a~alul), IQEILImu 2) << 1, 

where q is the electric charge density of ions in the region of the unipo!ar coronal dis- 
charge; b is their mobility (b > 0 for a positive coronal discharge while b < 0 for a nega- 
tive one); u and E are the projections of the gas velocity and the electric field strength 
onto the x axis; p, D, cv, and T are the density, viscosity, specific heat, and temperature 
of the gas (its relative permittivity is taken as one); Q, m, and a are the electric charge, 
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mass, and radius of an aerosol particle. To derive these inequalities we must estimate the 
relative orders of magnitude of the terms characterizing the influence of the electric field 
in the equations of momentum and heat inflow for a unipolarly charged gas and in the equation 
of motion of charged aerosol particles [2] and write the conditions for their smallness. As 
a result, we obtain the above inequalities, which have the following meaning. The first two 
inequalities mean that the work of Coulomb forces acting on the gas is much less than its 
kinetic energy, while the inflow of Joule heat to the gas is small compared with its internal 
energy, and hence the influence of the electric field on the gas motion is insignificant. 
The last inequality means that the characteristic drift velocity of aerosol particles relative 
to the gas under the action of Coulomb forces is small compared with the gas velocity or that 
the work of these forces is small compared with the initial kinetic energy of the particles, 
and hence the influence of the electric field on their motion is insignificant. Then the 
velocities of the gas and the aerosol particles can be considered as constant and equal to 
each other. Also let the concentration n of aerosol particles be sufficiently low (n[Q I << 
l ql) and let their influence on the values of E and q be neglected. 

As a result, the differential equations and boundary conditions describing the coronal 
discharge and the charging of aerosol particles while moving in it will have the form 

dE/dx = 4nq, E = --d~/dx, q(u -~ bE) = 1  = r (1 . I )  

q~(O) = ~P, E(O) ---- r Eo, q~(L) = 0 ;  (1.2) 
Q 2 

" 3 . ~ a ~ b q E ( i - - ~ ) ,  ~ < ~ 1 ,  
u~x --'/, J'= (1.3) 

0 Q 

Q(0 )=0 ,  u > 0 ;  Q (L )=0 ,  u < 0 .  (1.4) 

Here ~ is the electric potential; j, electric current density of ions; ~, emitter potential 
(I~I > I ~o I); J, electric current flowing to an aerosol particle of radius a due to the cap- 
ture of ions by it under the action of the electric field. The constant quantity u appearing 
in Eqs. (1.2) and (1.4) can be both larger and smaller than zero, and for u < 0 it is assumed 
that u + bE > 0 everywhere ill the interelectrode gap. For u > 0 this inequality is auto- 
matically satisfied, since bE > 0 follows from the statement of the problem. The second 
equality of (1.2) means that after the ignition of the coronal discharge the electric field 
strength near the emitter remains constant with an increase in I~I [5]. The derivation of 
Eq. (1.3) for J was discussed in [6, 7] under the assumption that the conductivity of the 
aerosol particles is much greater than the conductivity of the gas. Equations (I.I)-(1.4) 
can be used for both a positive and a negative coronal discharge. In the latter case ~ < 
~o < 0, E < 0, q < 0, b < O, and j < 0. 

Integrating Eqs. (I.I) with allowance for the first two boundary conditions of (I.2), we 
obtain 

E = b-~(V(u + bEo) ~ + 8nb/x u); (l .5) 

uz t [((tt + bEo)"- -i- 8rib~x) ~z~ (u + bEo)a]. 
r  b t2~b~] - -  ( 1 . 6 )  

From Eqs. (1.5) and (1.6), using the last condition (1.2), we find the electric field strength 
EL(G) at the end of the interelectrode gap and the electric current density j(EL) which 
appears in (1.5) and (1.6): 

E z " = E  L ~ \ L  - -  --'-E-. § ,..~_ ....E_+u) _{_ 3 

i = ~ [(u -F b E D  ~ - -  (u  § bEo)=]. 

2. Let us investigate the charging of aerosol particles when the aerosol moves through 
the discharge gap in the direction from the emitter toward the collector (u > 0). In this 
case the absolute value of the electric field strength grows monotonically in the direction 
of motion of the aerosol particles. As a result, the absolute values of the charges of the 
aerosol particles grow as they move in the entire interelectrode gap. 

Choosing the quantity E as the independent variable instead of x and using the first 
equation of (1.1), we reduce the equation of charging of an aerosol particle (1.3) to an 
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equation of the Riccati type, 

dw/dE + (w -- t)/E + ( b / 4 u ) ~  = O, w ~ (t - -  Q/3E~). (2 .1 )  

By the substitution w(E) = 2q'(~)/~q(~), ~ = bEc~/u, Eq. (2.1) is reduced to a zeroth- 
order modified Bessel equation for the function ~(~). Solving the latter and using the bound- 
ary condition (1.4), we find the following expression for Q(E): 

Q = (3a2u/b) Q* (E*, E~), E* ~ bE~u, E~ ==- bEo/u; (2 .2 )  

Q* = E* 

I n  the  p a r t i c u l a r  c a s e  when E~ = 0 Eq. ( 2 .3 )  i s  s i m p l i f i e d :  

Q* = E*4(FU)/4(V ) 
In  F ig .  1 we p r e s e n t  the  dependence  Q*(E*) f o r  E~ = 0, 1, and I0 ( cu rv e s  1-3,  r e s p e c t i v e -  

l y ) .  It is seen that the charge of an aerosol particle grows monotonically with an increase 
in elecLric field strength and for E* ~ 25 it hardly depends on the electric field strength at 
the start of the interelectrode gap if E~ ~I0. 

Using an asymptotic expansion of the modified Bessel functions for large and small values 
of the arguments [8], one can show that 

(2.4) 
= ~ E 0  > eonst, E*-~ oo; 

Q* = ( t /8) (E*'- -  E$') q- O(E*3), E*-+0 ,  E~--~0. (2 .5)  

I t  f o l l o w s  f rom F i g .  1 t h a t  t h e  q u a n t i t y  0(1/EcrE -~*) in  Eq. ( 2 .4 )  i s  s m a l l  f o r  E * ~ > 2 5  and 
E ~ , 1 0 .  E q u a t i o n s  ( 2 . 4 )  f o r m a l l y  c o r r e s p o n d ,  f o r  e x a m p l e ,  to  t h e  c a s e s  o f  E + = (Eo = c o n s t ,  
u = const) or u § 0 (E = const, Eo = const) while Eqs. (2.5) correspond to the case of u § 
(E = const, Eo = const). 

3. Now let us investigate the charging of aerosol particles when the aerosol moves 
through the discharge gap in the direction from the collector toward the emitter (u < 0). In 
this case the absolute value of the electric field strength decreases monotonically in the 
direction of motion of the aerosol particles. As a result, we have 

udQ/dx= J=/=O, x t < x < L ,  (3 .1 )  

~ Q / d x =  J = O ,  O < x ~ x c ,  

where the x coordinate is found from the equation 

q(xe) = 3~E(xe) (3 .2 )  

and, as will be shown below, does not depend on the particle ~adius a. 

According to Eqs. (3.1), the absolute values of the charges of the aerosol particles 
grow as they move through the region of Xc < x < L adjacent to the collector. But in the 
region of 0 < x ~Xc adjacent to the emitter the charges of the aerosol particles remain 
constant. If Eq. (3.2) has no solution x c out of the interval (0, L), then the absolute 
values of the charges of the aerosol particles grow as they move in the entire interelectrode 
gap. 

As in Sec. 2, we reduce the equation of the charging of an aerosol particle (1.3) to an 
equation of the Riccati type (in the region of IEI > IEcl ~ IE(xc) I adjacent to the collector): 
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dw/dE  -]- (w - -  l ) l E  - -  (bl4[ul)w ~ =: O, w =--- (l --  Qi3Ea2).. (3.3) 

By the substitution w(E) =--2n' (~)/~rl(~), ~ = ~ ,  Eq. (3.3) is reduced to a zeroth-order 
Bessel equation for the function n(~). Solving the latter and using the boundary condition 
(1.4), we find the following expression for Q(E): 

Q = (3a~ I u ]/b) Q* (E* ,  E~) ,  E* := bE/l  u l, E*L ~- bEL/] U ]; (3.4) 

Q* = - -  E *  y (Ve )4(V  ) (3.5) 

Equation (3.5) for Q* is valid only for E *~ E c. Obviously, for E* < E c we have Q* = 
Q*(E*, E~) = const. The value of E c is found from the equation 

(Ec, E~) : :  Er (3.6) 

which follows from the condition (3.2) and the expressions (3.4) for Q and E*. From Eq. (3.6) 
it follows that the value of E c does not depend on the radius of the aerosol particle, and 
hence the coordinate Xe also does not depend on it. If E~ < Ec, then the value of the elec- 
tric field strength E c at which the current J is reduced to zero is reached within the inter- 
electrode gap at the point Xc. 

The function Q*(E*) for E L = l is presented in Fig. 2. It is seen that for a value of 
E* = 0.6 the quantity Q* is already close to its maximum value of 0.1, which is reached for 
E* = E* c = 0.1. 

Using asymptotic expansions of the Bessel functions at large values of the arguments 
[8], we can show that for E~ > E* § ~ and 0 -= ~LL- ~/~- > ~ we have 

Q* = (]/rE-~-- e tg0) '  + 3/sin~ 0-t- O ( I / V ~ ) ,  E* >.E'c,  (3.7) 

Q , =  Eo 

Here 0 < d < 0c = /E~- /E c = ~/2 -- 3/(2/E~) + O(|/E~). 

Equations (3.7) formalIy correspond, for example, to the cases of EL + ~ (u = const) or 
u § 0 (EL = const), with E c § E L and x c § L in the latter case, obviously. 

The equations for Q(E) obtained in Sees. 2 and 3, with allowance for the expression 
(1.5) for E(x), give the function Q(x) in the problem under consideration. 

The authors thank L. I. Sedov and V. V. Gogosov for a useful discussion of the work. 
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